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B. INTRODUCTION

Interval-censored (IC) data are encountered in three areas of breast cancer research.
The most common application is in clinical relapse follow-up studies in which the study
endpoint is disease-free survival. When a patient relapses, it is usually known that the
relapse takes place between two follow-up visits, and the exact time to relapse is unknown.
In statistics, we say relapse time is interval censored. Interval censoring is also encountered
in breast cancer registry studies in which information on family history of cancer is updated
periodically. The Strang Breast Surveillance Program for women at increased risk for breast
cancer, for instance, has enlisted over 800 women with complete pedigree information which
is verified and updated continuously. Family history data such as age at diagnosis of a
specific cancer, or a benign but risk-conferring condition, are obtained from each registrant
at each update. Time to a cancer event, and definitely time to first detection of a benign
condition, are at best known to fall in the time interval between the last update and age
at diagnosis. A third but increasingly important area of application of interval censoring
is in breast cancer chemoprevention experiments or prevention trials, which involve the
observation of one or more surrogate endpoint biomarkers (SEB) over time. The scientific
question of interest here is the estimation of time for the SEB to reach a target value,
and time from cessation of intake of a chemopreventive agent to the loss of its protective
effect. Unfortunately, the exact values of both these time variables are known only to lie in
between two successive assay inspection times. In a breast cancer follow-up study, we will
often encounter covariates (for instance, tumor size and nodal status in a relapse study, and
baseline SEB value in a chemoprevention trial).

Let X denote a time-to-event variable with distribution F(z) = Pr(X < z), or equiv-
alently, survival function S(z) = 1 — F(z). In interval censoring, X is not observed and
is known only to lie in an observable interval (L, R). In our previous DOD funded grant,
we have made fundamental contributions to both the theory of the generalized maximum
likelihood (GML) estimation of S, and the computation in connection with the inference of
GML estimator (GMLE) S of S. These contributions are restricted to the case of univariate
interval-censored data without covariates.

The Cox proportional hazards model [1] specifies that covariates have a proportional
effect on the hazard function of X. This model provides powerful means for fitting failure
time observations to a distribution free model and for estimating the risk for failure associ-
ated with a vector of covariates. It is extensively used for right-censored data. Finkelstein
[2] applied the Cox model to analysis of interval-censored data. However, she did not estab-
lish asymptotic properties of the GMLE of the parameters in the model and the approach
is limited to small sample sizes due to the computational difficulty .

Our interest in IC data with covariates is driven by needs arising from two related
areas of breast cancer research at Strang. First, our investigators in the Strang Cancer
Genetics Program want to study various patterns of familial aggregation of breast, ovarian
and other forms of cancer using family history data from the Strang Breast Surveillance
Program. Studies of familial early onset of breast cancer, breast-ovarian and breast-prostate
associations will lead to IC data with covariates; therefore, a proper statistical procedure
together with a feasible software to deal with such data are very much needed. Second,
we conducted a one-year chemoprevention trial of indole-3-carbinol (I3C) for breast cancer
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prevention. In this prevention trial we monitored the levels of two SEB’s, a urinary estrogen
metabolite ratio and a blood counterpart, both of which are subject to interval censoring.
An earlier dose-ranging study of I3C conducted by Wong et al [2] has been published.

The overall aim of this research proposal is to develop statistical inference for interval-
censored data with covariates that are encountered in breast cancer chemoprevention trials
employing surrogate endpoint biomarkers, and in breast cancer registry follow-up studies of
familial aggregation of breast and other forms of cancer. Asymptotic generalized maximum
likelihood theory under the Cox regression model will be investigated and computer software
package for maximum likelihood inference will be implemented.

C. BODY
C.1. Model Formulation and Likelihood Equations.
Let Y1 < Yk < --+ < Yk i denote the follow-up times for a patient who has made
K follow-up visits, in a longitudinal follow-up study. Since the number of visits for each
patient may vary, K is a random positive integer. For convenience, define Yk o = 0 and
Yk x+1 = 00. The time-to-event variable of interest, X, is not directly observed; instead, it
is known to lie in between two successive censoring time points (Yx ;, Yk, j+1), where j =0,
..., K. Note that X is left censored if j = 0, strictly interval censored if 0 < j < K, and
right censored if X > Yk k. The observable interval-censored data corresponding to X is
given by
(L,R) = (Yk,i, Yk i+1) if Yii < X <Ygi11,1=0,1,..., K. (2.1)

In addition to (L, R), we also observe a p x 1 covariate vector Z. We assume that K
and the Y} ;’s are independent of (X, Z).

The Cox regression model for the survival function at X = z given Z = 2 is represented
by

S(al2) = [So(@)]*",

where 2z is the dot product of Z and 8, Sp(z) is a baseline survival function and 3 is a
p-dimensional regression coefficient vector.

Let I; = (Li, Ri,2;), i = 1, ..., n, be a random sample of size n interval-censored
observations with covariates. In terms of the original observed intervals, the likelihood
function of S and b is given by

L= [L(S@)™™ - (SR)"™), 22)

where S is a survival function, and b is a p x 1 dimensional vector. The GMLE of (S, ) is
a value (S,b) that maximizes (2.2) over all survival functions S and all b € RP.

Since S, places all probability mass on the innermost intervals of the I;’s (see Peto
(1973) or Turnbull (1976)), it is often computationally simpler to express L in terms of
innermost intervals.

We say that an interval A is an innermost interval of the I;’s if A is a nonempty finite
intersection of one or more of the I;’s such that either ; N A = 0 or I; N A = A for each
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i. Suppose there are a total of m distinct innermost intervals A; = (&,m:], where n; < &1
and m < n. Then the likelihood function (2.2) is equivalently given by

L= 0™ = (3 s, (2.3)

=1 k>I; k>r;

where I; = sup{j : n; < L;}, i =sup{j : n; < R;} and s = (s1,..., Sm) denote the vector
of the probability weights. The log likelihood of (s, b) is

n

£(s,6) =Y I[(Y 80 = (3 1)) (2.4)

i=1 k>1; k>r;
Note that (3 g, sk)ezib =1ifr; =0and (3,5, sk)ezib =0if l; =m.

C.2. Generalized maximum likelihood estimation.

A GMLE of (s, B) is a value of (s,b) that maximizes the likelihood function (2.4). We
could follow the Newton-Raphson (NR) algorithm taken by Finkelstein [2]. However, this
would involve the inverse of a matrix of order (m +p — 1) X (m + p — 1). Since m can be
potentially large when n is large, the NP algorithm is not feasible for a large data set. In
our simulation studies with n = 200, m ranges from 17 to 22.

We advocate a computationally simple approach by first grouping the original data
(Li, R;) and then applying a two-step iterative scheme to obtain the two-step estimators
(TSE) of s, and 3 based on the innermost interval corresponding to the grouped intervals.

In the first year of our research, we have successfully implemented the computer software
to calculate the TSE’s of s, and 8. The algorithm is summarized as follows.

1. Partition the entire data range into g time points, ¢ < n. Let (L}, R}) denote the
grouped observable intervals, i = 1, ..., n. Let s = (s1,...,5m,) denote the vector of
probability masses distributed over the my, < m innermost intervals corresponding to
the (L}, R})’s

2. Maximize the likelihood of s and b based on the grouped data using a two-step maxi-
mization algorithm. At each iteration of the algorithm, there is an s—step in which the
likelihood is increased by changing a transformed parameter of s, while b is fixed at the
value from the previous iteration. This is followed by a b—step in which the likelihood
is maximized with respect to b with s fixed at the value updated at the current s—step.

For ease of presentation, we outline the algorithm in the case my = 3 so that s =
(313 S92, 53)'

s—step:
a. Transform s to s(u), where s(u) = (s1(u), s2(u), s3(u)),

s1+1u s
14+u’

s1(u) =




and u is such that u + s; > 0.

b. Use NP algorithm to maximize £(s(u),b) with respect to u. Denote the maximizer by
uy. Let s* = s(uy).

c. Transform s* to s*(u), where s*(u) = (s} (u), s3(u), s3(u)),

83

EH v/ N S3tu _
1+u

PR 32(“’) - m)

and s3(u)

d. Use NP algorithm to maximize £(s*(u),b) with respect to u. Denote the maximizer by
Ug- Let ﬁ** = §*(U2).
e. Transform s** to s**(u), where s**(u) = (s}*(u), s3*(u), s3*(u)),

s3*+u
1+u

st s5*
s¥*(u) = —=—, and s3"(u) =

S** - ,

i (u) 14+u

f. Use NP algorithm to maximize £(s**(u),b) with respect to u. Denote the maximizer
by us. Let s*** = s**(us).

b—step:
Use NP algorithm to maximize £(s***,b) with respect to b.
Repeat s—step and b—step until convergence.

C.3. Sensitivity study of TSE.

We have carried out Monte Carlo simulations to investigate the sensitivity of the TSE
of B to the degree of partitioning used in the data grouping. Our simulation studies are
designed as follows:

1. X is exponential with pdf f(z) = %e_[%&“]l[(:v >y — )], where 1[-] denotes the
indicator function.

2. There are 3 mutually independent covariates Z;, Z; and Zs, each of which is a discrete
random variable with pdf f(i) = =<+—,i=1,...,6.

Zj:] J

3. (L, R) is generated according to the following scheme:

(0,U) if X <U,
(L,R) = { (20,00) if X > 20,
(U+kV,U+(+1)V) £X<2,U+kV <X <U+(k+1)V and k> 1.

where U ~ U(0,2) and V ~ U(0,2.3).
For each of Monte Carlo simulation, a total of 1000 replications are performed. Group-
ing width of sizes 3, 5 and 8 are considered in the partitioning of the interval [0, 20].
Tables 1 and 2 summarize the simulation results for sample sizes n = 30 and n = 200,
respectively. For original data (no grouping), GMLE values are given. In the 3 cases of data
grouping, TSE values are listed. The figures given in parentheses are standardized differences
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defined as | sample mean of estimator - true value |
sample standard error of estimator
to changes in the degree of partitioning, and sample size appears to be not a relevant issue

either. The conclusion here applies to the parameter estimate of § only. However, in
assessing closeness of asymptotic inference of the TSE to that of the GMLE, we will have to
pay attention to the asymptotic covariance matrix of the TSE of 3. Because the covariance
matrix will be a function of the probability weights sy, ..., 8m,, it is clear that the degree of
partitioning can affect the asymptotic approximation of the TSE to the GMLE in a more
significant way. We will relegate this aspect of research to the second year of our DOD

. Essentially, the TSE is quite insensitive

grant.

data cpu time p1 = —0.1 Bo = 0.2 Bs = —0.1
original 10 min. -0.092 0.209 -0.092
(0.083) (0.085) (0.081)
grouped 4 min. -0.093 0.217 -0.094
width=3 (0.068) (0.136) (0.055)
grouped 4 min. -0.094 0.239 -0.094
width=>5 (0.050) (0.219) (0.048)
grouped * * * *
width==8

* Calculation not possible due to sparseness of data
Table 1. Monte Carlo simulations for TSE of 3 for n = 30

data cpu time By =-0.1 B2 = 0.2 B3 = —0.1

original 58.3 min. -0.087 0.191 -0.087
(0.419) (0.281) (0.406)

grouped 6.5 min. -0.089 0.198 -0.089
width=3 (0.333) (0.057) (0.333)
grouped 5.6 min. -0.090 0.203 -0.090
width=>5 (0.294) (0.077) (0.286)
grouped 4.7 min. -0.092 0.212 -0.093
width=8 (0.205) (0.250) (0.171)

Table 2. Monte Carlo simulations for TSE of ﬁ for n = 200

Incidentally, the close approximation of the GMLE values of § to the true 3 (first row
of Table 1 or Table 2) indicates that the GMLE of § is consistent. Similarly, rows 2-4 of
Table 1 or Table 2 suggest that the TSE of 8 is consistent.

|
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D. KEY RESEARCH ACCOMPLISHMENTS IN THE FIRST YEAR

e We have completed Task 1.
We have successfully implemented a computer progam to calculate the TSE of the Cox
regression coeflicients 3.
e We have completed Task 2.
We have demonstrated by Monte Carlo simulations that the TSE of 8 is not much
affected by the degree of partitioning used in data grouping. B
e We have begun to work on Task 3.
We have demonstrated by Monte Carlo simulations that the GMLE of 3 is consistent.
e We have begun to work on Task 4.
We have demonstrated by Monte Carlo simulations that the TSE of 3 is consistent.

E. REPORTABLE OUTCOMES
e A computer program to calculate the GMLE of the baseline survival function So and
that of the Cox regression coefficients 3.
e A computer program to calculate the TSE of Sy and that of 3.
Both of these computer programs have been made available for the public via the
internet site math.binghamton.edu.ftp/pub/qyu.

F. CONCLUSIONS

In the first year of our DOD grant, we have successfully completed our research ob-
jectives stated in Tasks 1 and 2. In addition, we have begun research work pertaining to
Tasks 3 and 4. We have implemented a computer program to compute both the TSE of the
baseline survival function and the TSE of the regression coefficients of the Cox regression
model under interval censorship. Using Monte Carlo simulations, we have demonstrated
that the TSE of the regression coeflicients is consistent.

The results which we have established will be useful to breast cancer researchers pur-
suing chemoprevention intervention trials involving surrogate endpoints biomarkers, and
genetic epidemiologists conducting studies on familial aggregation of breast cancer and re-
lated cancers.
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